| gapply {SparkR} | R Documentation | 
Groups the SparkDataFrame using the specified columns and applies the R function to each group.
gapply(x, ...) ## S4 method for signature 'GroupedData' gapply(x, func, schema) ## S4 method for signature 'SparkDataFrame' gapply(x, cols, func, schema)
| x | a SparkDataFrame or GroupedData. | 
| ... | additional argument(s) passed to the method. | 
| func | a function to be applied to each group partition specified by grouping
column of the SparkDataFrame. The function  | 
| schema | the schema of the resulting SparkDataFrame after the function is applied.
The schema must match to output of  | 
| cols | grouping columns. | 
A SparkDataFrame.
gapply(GroupedData) since 2.0.0
gapply(SparkDataFrame) since 2.0.0
Other SparkDataFrame functions: SparkDataFrame-class,
agg, alias,
arrange, as.data.frame,
attach,SparkDataFrame-method,
broadcast, cache,
checkpoint, coalesce,
collect, colnames,
coltypes,
createOrReplaceTempView,
crossJoin, cube,
dapplyCollect, dapply,
describe, dim,
distinct, dropDuplicates,
dropna, drop,
dtypes, exceptAll,
except, explain,
filter, first,
gapplyCollect,
getNumPartitions, group_by,
head, hint,
histogram, insertInto,
intersectAll, intersect,
isLocal, isStreaming,
join, limit,
localCheckpoint, merge,
mutate, ncol,
nrow, persist,
printSchema, randomSplit,
rbind, rename,
repartitionByRange,
repartition, rollup,
sample, saveAsTable,
schema, selectExpr,
select, showDF,
show, storageLevel,
str, subset,
summary, take,
toJSON, unionAll,
unionByName, union,
unpersist, withColumn,
withWatermark, with,
write.df, write.jdbc,
write.json, write.orc,
write.parquet, write.stream,
write.text
## Not run: 
##D Computes the arithmetic mean of the second column by grouping
##D on the first and third columns. Output the grouping values and the average.
##D 
##D df <- createDataFrame (
##D list(list(1L, 1, "1", 0.1), list(1L, 2, "1", 0.2), list(3L, 3, "3", 0.3)),
##D   c("a", "b", "c", "d"))
##D 
##D Here our output contains three columns, the key which is a combination of two
##D columns with data types integer and string and the mean which is a double.
##D schema <- structType(structField("a", "integer"), structField("c", "string"),
##D   structField("avg", "double"))
##D result <- gapply(
##D   df,
##D   c("a", "c"),
##D   function(key, x) {
##D     y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
##D }, schema)
##D 
##D The schema also can be specified in a DDL-formatted string.
##D schema <- "a INT, c STRING, avg DOUBLE"
##D result <- gapply(
##D   df,
##D   c("a", "c"),
##D   function(key, x) {
##D     y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
##D }, schema)
##D 
##D We can also group the data and afterwards call gapply on GroupedData.
##D For Example:
##D gdf <- group_by(df, "a", "c")
##D result <- gapply(
##D   gdf,
##D   function(key, x) {
##D     y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
##D }, schema)
##D collect(result)
##D 
##D Result
##D ------
##D a c avg
##D 3 3 3.0
##D 1 1 1.5
##D 
##D Fits linear models on iris dataset by grouping on the 'Species' column and
##D using 'Sepal_Length' as a target variable, 'Sepal_Width', 'Petal_Length'
##D and 'Petal_Width' as training features.
##D 
##D df <- createDataFrame (iris)
##D schema <- structType(structField("(Intercept)", "double"),
##D   structField("Sepal_Width", "double"),structField("Petal_Length", "double"),
##D   structField("Petal_Width", "double"))
##D df1 <- gapply(
##D   df,
##D   df$"Species",
##D   function(key, x) {
##D     m <- suppressWarnings(lm(Sepal_Length ~
##D     Sepal_Width + Petal_Length + Petal_Width, x))
##D     data.frame(t(coef(m)))
##D   }, schema)
##D collect(df1)
##D 
##D Result
##D ---------
##D Model  (Intercept)  Sepal_Width  Petal_Length  Petal_Width
##D 1        0.699883    0.3303370    0.9455356    -0.1697527
##D 2        1.895540    0.3868576    0.9083370    -0.6792238
##D 3        2.351890    0.6548350    0.2375602     0.2521257
##D 
## End(Not run)